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Motivations 
Riveted structure & corrosion induced mechanical stress prevalent in aircrafts & warships: 
 
 The structure prone to galvanic corrosion when dissimilar metals used 
 Other localized corrosion can occur with or without galvanic influence   
  Mechanical failure can be induced or enhanced by localized corrosion 
 Capability in predicting the corrosion and mechanical damages useful for OEM and 

repair process design & maintenance scheduling 

Aircrafts experiencing severe corrosion conditions New generation Littoral Combat Ship (aluminum 
triple-hull combatant) for US NAVY 
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Objectives & Approaches 

 
Objectives 

 
 Using finite element based corrosion modeling tool (GalvanicMaster, Elsyca Co.) to 

model localized corrosion of riveted structure under galvanic influence 
 
 

Approaches 
 

 Galvanic corrosion finite element CAD modeling of riveted panel (Hi-lok steel 
fasteners & AA2219 rivets on AA7075) 

  Electrochemical characterization of constituent materials 
 Probabilistic pitting kinetics under dominant conditions (Cl- concn., current density) 

experimentally characterized 
 Salt fog test for model calibration (in progress) 
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Background 
 Riveting preferred over welding for light structural metals, i.e. aluminum alloys 

  Metal corrosion involves oxidation of a metal and reduction of an oxidant (O2, H+) 

  Metal oxidation=anodic reaction; O2 , H+ reduction=cathodic reaction 

 Polarizing by a galvanic couple can enhance pitting & other localized corrosion 

Illustration of pitting of  Al alloys 
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Model output (visual) 
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Model Description 
 CAD drawing of a riveted aluminum panel created in Solidworks 

 Polarization curves of constituent materials measured  

 Corrosion current distribution used for evaluating pitting as first attempt 

Riveted structure (above 
landing gear) in a helicopter 
being maintained for corrosion 

* Using GalvanicMaster software by Elsyca 

CAD drawing of riveted panel 

AA2219 rivets 
Hi-lok  

AA7075 plate 



7 

Model Input-Polarization Curve Measurement 
• Polarization (V-I) curves used as boundary conditions of the model 
• Local current distribution determined based on potential distribution 
• Pseudo-steady state measurement required in bulk electrolytes  

• Pros: Easy to perform, shorter duration (@1 mV/s) to avoid electrolyte change 
• Cons: Accurate only for bulk electrolyte environment, missing mass transport 
effect 
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Model Input-Polarization Curve Measurement 
• V-I measurement using rotating disk electrode (RDE) captures mass transport contribution 
• Mass transport can be important for cathode reaction in thin film 
• Alternative method with thin film electrolyte better represents reality, but less accurate 
• Standardization of V-I curve measurement needed 

Rotating Disk 
Electrode (RDE) 
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Model Input-Galvanically Induced Pitting  
 Pits grown under galvanic influence in a controlled environment ([Cl-], pH, duration) 

 Maximum pit depth analyzed using white light interferometer 

Samples masked to produce controlled surface area  8-channel potentiostat for simulated pitting 
under galvanic influence  



10 

Model Input-Depth Analysis of Galvanically Grown Pit 
•  Interferometer used to accurately measure maximum pit depth 

• Extreme value analysis applied to derive probabilistic pit growth kinetics 

*Gumbel distribution 
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Effects of Current & [Cl-] Pit on Depth Probability Distribution*  
 Pitting algorithm defined by experimental data & bounded by conditions of interest 
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•  P(d)-probability density function 
•  P(d,t)-Probability of failure, i.e. the probability that at least 

one corrosion event reached or exceeded depth “d”.  
•  d(D)- Pit depth reached for at least one corrosion event at a 

given probability of failure.  

*Type I: Gumbel distribution, P. M. Aziz, 1956 (10), Corrosion 



Galvanic Corrosion Rate and Current Prediction 

• 200 ppm Cl- 
• 5000 h 
• Assuming continuous exposure 

 Model predictions: Initial galvanic corrosion rate and current distribution on a 
riveted plate 

0 lnlld l'lclllllaglea 
.... ,.Ce•l8r 



Failure Probability Prediction & Experimental Observation 

• 200 ppm Cl- 
• 5000 h 

Failure probability of finding a pit at a given exposure condition 

 UTRC pit growth modeling predictions at given exposure environment and time 
under galvanic influence for a riveted panel, incorporated into the GalvanicMaster 
modeling tool   
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Summary 

 GalvanicMaster corrosion modeling useful as a starting point to 
predict/understand corrosion risk of complex structure 

 Localized corrosion modeling algorithms can be incorporated in the 
GalvanicMaster modeling tool 

 Electrochemical characterization methods for model inputs need to be better 
defined and implications to be examined 

 Standardizing EC characterization methods to include the electrolyte thin film 
physics and establishing guidelines on choosing I-V curves 

 Future predictive capability should include accumulation of corrosion damage 
and material evolution, including accurate description of electrolytes 

 Advanced corrosion modeling shall be integrated with fracture mechanics 
modeling to predict service life 
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